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ABSTRACT

Phased Array Corrosion Mapping (PACM) has emerged as a powerful tool for detecting localized 
corrosion in industrial settings, particularly in the petrochemical industry. However, its application 
has been limited to plant operating temperatures within the recommended range for on-stream 
ultrasonic testing. This study addresses this gap by conducting a comprehensive Probability of 
Detection (POD) analysis using the MH1823 POD software, following the guidelines of MIL-
HDBK-1823A (Department of Defense Handbook, 2009). The binary hit/miss method was employed 
to evaluate the accuracy of PACM on carbon steel (CS) and stainless steel (SS 304 and SS 316) 
surfaces at elevated temperatures up to 250 °C. Experimental results demonstrated successful 
detection of all flat-bottom-hole (FBH) indications, with deviations categorized as “miss” when 
exceeding 10% of the designed dimension. The POD curves revealed robust detection capabilities 
across various temperatures, with distinct clusters exhibiting different a50, a90, and a90/95 values. 
These findings underscore the reliability and efficacy of PACM in high-temperature applications, 
offering a significant advancement in non-destructive testing (NDT) for the petrochemical industry. 
The study highlights the potential of PACM to enhance turnaround maintenance (TAM) by enabling 

accurate on-stream inspections, thereby reducing 
downtime and increasing operational efficiency. 
Future research should explore the “â versus 
a” method to further enhance the accuracy and 
understanding of PACM in NDT applications.

Keywords: Non-destructive testing, phased array 
ultrasonic testing, probability of detection, turnaround 
maintenance
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INTRODUCTION

The continuous growth of the petrochemical industry necessitates the ongoing modification 
and expansion of existing factories to accommodate the production of additional by-
products. However, these expansions result in increased complexity and maintenance 
requirements. Consequently, many petrochemical plants undergo periodic shutdowns and 
turnaround maintenance (TAM) after several years of operation. TAM is a critical process 
for addressing various maintenance needs, primarily due to the aging of equipment and 
infrastructure. Over time, aging can lead to wear and tear, corrosion, and other forms of 
degradation, resulting in decreased efficiency, increased safety risks, and the potential 
for unplanned shutdowns or catastrophic failures (Aiello et al., 2020). Additionally, the 
buildup of fouling or contaminants in equipment can reduce efficiency and increase the 
risk of corrosion or other damage, necessitating TAM to address these issues (Al-Turki 
et al., 2019).

The demand for TAM arises from potential disruptions; even minor repairs can lead to 
economic losses due to halted production of multiple products. While all facility owners 
strive to avoid maintenance-related shutdowns, they are acutely aware of the risks posed 
by neglecting proper maintenance, which can lead to unplanned shutdowns and industrial 
accidents (Hlophe & Visser, 2018).

In response, many owners are exploring optimizing the TAM process by minimizing 
turnaround time or extending the intervals between TAM events to maximize operational 
benefits (Al-Marri et al., 2020; Elwerfalli et al., 2019). The petrochemical industry faces 
significant corrosion-related challenges, leading to decreased efficiency, increased safety 
risks, and potential unplanned shutdowns or catastrophic failures. 

Ultrasonic thickness gauging (UTG) is a popular method for detecting corrosion during 
on-stream inspections in the petrochemical industry, primarily due to its cost-effectiveness 
and ease of use. Inspectors can quickly learn to operate UTG with minimal training. 
However, UTG has some limitations; its point-by-point nature can lead to inadequate 
detection of localized corrosion and make inspections of larger areas time-consuming.

In contrast, phased array corrosion mapping (PACM) offers a more comprehensive 
solution. It is important to note that, despite its advantages, there are currently no established 
examples of ultrasonic applications for high-temperature operations. The recommended 
temperature range for ultrasonic testing (UT) is up to 52 °C (Jory, 2019). However, on-
stream inspections may require work beyond these limits.

Previous experiments have been conducted to investigate the feasibility of extending 
the use of UT beyond its recommended temperature limit (Tai, Sultan et al., 2023). The 
results indicate that as temperature increases, the velocity of ultrasound waves decreases 
while attenuation increases. The following research aimed to build upon the previous 
experiment’s findings and explore the effectiveness of PACM in detecting corrosion at 
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high temperatures. The results confirmed that PACM could accurately detect corrosion in 
high-temperature environments when the velocity and decibel settings were appropriately 
adjusted (Tai, Grzejda et al., 2023). 

The utilization of Probability of Detection (POD) in Non-Destructive Testing (NDT) 
is of significant importance. POD provides a quantifiable measure of the success rate in 
identifying specific targets or flaws through designated inspection methods, thereby playing a 
crucial role in evaluating the effectiveness of novel NDT techniques (Cherry & Knott, 2022).

A review of academic articles published over the past two decades focusing on POD 
in relation to NDT reveals that UT and Eddy Current Testing (ECT) were among the initial 
methods to employ POD for assessing detection probabilities (Bato et al., 2020; Goursolle 
et al., 2016; Yusa, 2017). Following the development of POD and the introduction of 
Model-Assisted Probability of Detection (MAPOD) (Rodat et al., 2017), the application 
of POD has significantly expanded to encompass various NDT methods.

The literature review initially aimed to identify prior instances of POD applications 
in PACM. However, the limited availability of literature on this subject prompted a shift 
in focus toward using Phased Array Ultrasonic Testing (PAUT) (Bajgholi et al., 2023). 
While these two inspection methods differ in orientation, they share several commonalities.

A consistent factor contributing to the success of the output results is the incorporation 
of uncertainty parameters, as highlighted by numerous scholars in the literature. The 
selection of these parameters, including defect size, material thickness (Ribay et al., 2017), 
and water path considerations, plays a crucial role in PAUT, similar to conventional UT. 
Additionally, both methods utilize calibration blocks featuring flat bottom holes (FBH) 
and side drill holes (SDH) to calibrate the equipment (Dominguez et al., 2016; Marcotte 
& Liyanage, 2017).

This study aims to assess the accuracy of novel PACM testing techniques on surfaces 
with elevated temperatures of up to 250 °C through POD analysis. Upon reviewing the 
previously mentioned articles, it was noted that despite applying POD analyses to numerous 
NDT methods, such analyses were significantly absent for PACM. This gap represents the 
distinctive novelty of the current study.

METHODOLOGY

There are two distinct methods for conducting POD analysis: the “hit/miss” method and 
the “signal response versus flaw size” (â versus a) method. The choice between these 
methods depends on the nature of the data generated by the NDT system under examination 
(Rentala et al., 2018).

The “hit/miss” method is applied when the NDT system produces binary outcomes, 
meaning a flaw is either detected or not detected. In this method, the POD curve is estimated 
based on the proportion of detected flaws to the total number of flaws present in the sample 
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(Knott & Kabban, 2022b). This approach is typically used when the inspection data is 
discrete and lacks a measurable response associated with flaw detection. For example, in PT 
or RT, a flaw is either observed or not, with no measurable response linked to the detection.

In contrast, the “â versus a” method is utilized when the NDT system yields measurable 
responses that can be correlated with the size of the flaw. This method establishes a 
relationship between the signal response (â) and the flaw size (a), enabling the estimation 
of the POD curve based on the distribution of signal responses for a given flaw size. This 
approach is commonly used in NDT methods that provide measurable responses, such 
as UT and Eddy ECT (Kojima et al., 2019; Yusa et al., 2018; Zhu et al., 2018). It allows 
for assessing the system’s sensitivity to different flaw sizes and provides a quantitative 
measure of its performance.

The “hit/miss” approach relies on examining the number of successful detections (hits) 
and false negatives (misses) in a series of inspections. Logistic regression is a widely used 
statistical method in this approach, establishing a model for the probability of detection as a 
function of various factors, such as flaw size, inspection conditions, and system parameters 
(Knott & Kabban, 2022a).

In the “â versus a” approach, regression analysis with censored data is the primary 
statistical technique. This method is employed when some flaw sizes remain unidentified 
(censored) by the NDT system. The goal is to address the censoring of non-detected flaws 
and estimate the probability distribution of the detected flaw sizes. The regression model 
can then be used to determine the mean and variance of the detected flaw size distribution, 
allowing for calculating the probability of detection curve based on the estimated 
distribution (Rentala & Kanzler, 2022).

The accuracy of the output is contingent upon the amount of input data; insufficient 
data can introduce bias. MIL-HDBK-1823A recommends analyzing a minimum of 40 
representative defect data points for the “â versus a” method, alongside signal strength 
(“â”) measurements and crack sizes (“a”) (Department of Defense Handbook, 2009). In 
contrast, the “hit/miss” method does not process signal values. Instead, it estimates the 
POD curve based on binary results, where a hit indicates that a crack was detected and 
a miss signifies that it was not. This method necessitates more data due to the limited 
information it yields, requiring at least 60 data sets to avoid bias and ensure a reliable POD 
curve (Virkkunen et al., 2019).

The a90/95 value derived from the estimated POD curve is particularly significant in 
these applications. This value indicates the defect size that can be detected with a 90% 
probability and a 95% confidence interval, thereby providing a tangible measure of the 
reliability and effectiveness of the NDT process (Kim et al., 2021).

In a conventional two-parameter model, three key metrics are of interest: a50, a90, 
and a90/95. These parameters reflect different aspects of the Probability of Detection 
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(POD) curve:
• a50: This represents the discontinuity size for which the mean POD is 50%. It 

indicates the size at which the probability of detection is statistically expected to 
be 50%.

• a90: This is the discontinuity size for which the mean POD is 90%. It denotes the 
size at which the probability of detection is expected to be approximately 90%.

• a90/95: This parameter refers to the upper 95% confidence bound on a90, providing 
a level of certainty that the true a90 lies below this value, with 95% confidence.

The two-parameter model imposes a specific behavior on the POD curve: As the size 
of the discontinuity approaches zero, the POD should converge to zero; conversely, as the 
size approaches infinity, the POD should approach one (Knopp et al., 2019).

Binary Hit/Miss Approach

Several possible outcomes can result from NDT evaluations aimed at identifying defects. 
These outcomes include:

1. True Positive (TP): A defect exists and is correctly detected by the assessment.
2. False Positive (FP): No defects exist, but an incorrect assessment indicates the 

presence of defects.
3. False Negative (FN): A defect exists, but the assessment fails to detect it.
4. True Negative (TN): No defect exists, and the assessment correctly indicates the 

absence of a defect.
Two critical, independent probabilities are considered to quantify the capability of the 

NDT methods (Keprate & Ratnayake, 2015):
• Probability of Detection (POD) or probability of true positives (P(TP))

This represents the likelihood that the assessment will correctly detect a defect. It 
is calculated using the following Equation 1:Equation 1: 

𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃(𝑇𝑇𝑃𝑃) = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

                                [1] 

 

• Probability of False Alarm (POFA) or probability of false positives (P(FP)) 

This represents the probability that the assessment incorrectly indicates the presence or 

absence of a defect. It is calculated using the following Equation 2: 

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃(𝐹𝐹𝑃𝑃) = 𝐹𝐹𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

    

   [1]

• Probability of False Alarm (POFA) or probability of false positives (P(FP))
This represents the probability that the assessment incorrectly indicates the 
presence or absence of a defect. It is calculated using the following Equation 2:

Equation 1: 

𝑃𝑃𝑃𝑃𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃(𝑇𝑇𝑃𝑃) = 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹

                                [1] 

 

• Probability of False Alarm (POFA) or probability of false positives (P(FP)) 

This represents the probability that the assessment incorrectly indicates the presence or 

absence of a defect. It is calculated using the following Equation 2: 

𝑃𝑃𝑃𝑃𝐹𝐹𝑃𝑃 𝑜𝑜𝑜𝑜 𝑃𝑃(𝐹𝐹𝑃𝑃) = 𝐹𝐹𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃

       [2]

Signal Response “â versus a” Approach

The “â versus a” method is utilized in NDT when measurable responses, typically in the 
form of signal amplitudes, are generated by the NDT system instead of binary outcomes 
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like “hit” or “miss.” This approach is particularly useful for NDT systems that produce 
quantitative data, allowing for a more comprehensive system performance evaluation. It is 
commonly employed in techniques such as UT and ECT, where signal amplitude provides 
valuable information about the size and characteristics of defects.

In the “â versus a” method, specifically in UT, the echo amplitude “â” is proportional 
to the measured crack size “a.” This relationship helps determine if the echo amplitude 
“â” is degraded due to noise. Given the variability in the relationship between “â” and 
“a,” the goal is to establish a threshold value for “â” that maximizes crack detection while 
minimizing false alarms caused by noise. To address this challenge, ASTM E3023 and MIL-
HDBK-1823A utilize a linear function to relate “â” to “a” and calculate prediction intervals 
to account for noise and statistical uncertainty (ASTM E3023-21, 2021; Department of 
Defense Handbook, 2009).

This method allows for assessing the POD of a flaw based on the measured signal 
response and the flaw’s characteristics. However, unlike the hit/miss method, it lacks a 
single, straightforward formula.

PACM Experiment and Data Acquisition

PACM and PAUT share many similarities in the processes and equipment used, with 
the primary distinction in their defect detection approaches. PAUT employs steering 
and focusing of ultrasound beams to identify weld defects, whereas PACM maintains a 
normal beam orientation to detect material corrosion, lamination, or metal loss. This wave 
propagation resembles that of a 0-degree normal probe in UT. Both PAUT and PACM 
utilize A-, B-, C-, and S-scan displays to provide a comprehensive three-dimensional 
representation of inspection results, as illustrated in Figure 1.

Figure 1. PAUT and PACM result presentation
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Figure 2. Schematic of the PACM experiment 
specimen design

The A-Scan displays the reflected signals and measures ultrasound echo amplitudes, 
integral to the quantitative measurement of the “â versus a” method used in POD analysis. 
In contrast, the B-Scan (side view), S-Scan (sectoral view), and C-Scan (top view) provide 
qualitative defect information relevant to the “hit/miss” method for defect detection.

Selecting appropriate calibration standards is critical in PACM experiments. Choosing 
between side drill holes (SDH) and FBH is particularly important. While SDHs are used 
in some NDT applications, they may not be suitable for PACM calibration, especially 
with a normal beam ultrasound configuration, where the ultrasound travels perpendicular 
to the test piece surface.

The test blocks designed for the PACM experiment comprised FBHs of various 
diameters and depths, as well as surface slots with varying depths, as shown in Figure 2. 
This design was compared to three different materials: (1) CS, (2) stainless steel 304 (SS 
304), and (3) stainless steel 316 (SS 316).

The PACM experiment adhered to a standardized protocol from previous studies 
aligned with industry guidelines. The protocol specifies calibration procedures, transducer 
selection, and data acquisition parameters to ensure the consistency and comparability of 
the test results (Tai, Grzejda et al., 2023; Tai, Sultan, Shahar, Łukaszewicz et al., 2024).

A test specimen was subjected to controlled heating using a heat treatment machine, 
incrementally raising the temperature from 30 °C to 250 °C in 10-degree increments. This 
temperature variation aimed to mimic real-world conditions and assess the performance 
of the PACM under elevated temperature scenarios.

In the experimental setup, the specimens used for data collection included FBHs labeled 
A1 to A4 and B1 to B4, each with receptivity depths of 3 mm and 6 mm. Additionally, surface 
notches labeled C1 to C4 were incorporated, all 
having a consistent width of 5 mm but varying 
depths. As illustrated in Figure 3, which presents 
the C-scan results of the PACM experiment, this 
technique provides accurate depth measurements 
and visually differentiates depths using color 
coding. Furthermore, the size of the FBHs can 
be quantified using specialized software.

POD Method with Mh1823 Software

The MIL-HDBK-1823A manual provides a comprehensive guide for constructing POD 
studies (Department of Defense Handbook, 2009). It also includes a useful guide for 
downloading Mh1823 POD software, which is built on the R statistical and graphics engine 
(https://www.r-project.org/). This software is accessible through the Statistical Engineering 
website developed by Annis (2023).
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The binary hit/miss POD approach was selected for analyzing PACM results due to its 
clear graphical representation and ability to measure flaw sizes. The following definitions 
were used for POD curve generation:

• The determination of hit/miss status depended on the precision of the results 
obtained, with all indications considered significant.

• Depth indications and dimensions of notches C1 to C4 were excluded because of 
consistent deviations below 0.5 mm.

• Measurements of specimens FBH A1–A4 and B1–B4, each with varying depths, 
were taken both vertically (VD) and horizontally (HD) to assess their variability 
concerning specimen dimensions (SD).

• A total of 138 deviation data points were collected for each FBH, resulting in 
an aggregate of 1,104 data points across all eight FBH indications. Example 
experimental data for FBH A1 are presented in Table 1.

• Instances of deviation equal to or exceeding 10% of the designated size were 
classified as “miss,” while those below this threshold were labeled “hit.”

• The POD curve was generated based on the same FBH dimension data for each 
temperature across the three different material types.

Table 1 demonstrates a systematic deviation increase for CS test results as temperature 
rises, particularly above 150 °C. Key observations include:

• At 30 °C, deviations for all FBHs (A1–A4, B1–B4) remain ≤1 mm.
• At 190 °C, vertical deviations (VD) reach 1.2 mm (FBH A1), and horizontal 

deviations (HD) peak at 0.79 mm.

Figure 3. PACM data example to indicate the vertical and horizontal dimensions
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• At 250 °C, HD deviations for FBH B1 exceed 0.7 mm, approaching the 10% 
threshold for “miss” classification.

RESULTS AND DISCUSSION 

The “hit/miss” model is a core component of POD analysis, facilitating the quantification 
of the likelihood of correctly detecting flaws or defects. This model offers four distinct 
link functions, each with unique mathematical characteristics:

1. Logit, Logistic, or Log-Odds Function: The Logit function is widely used in POD 
analysis due to its compatibility with binary outcomes. It transforms the probability 
of detection into log-odds, which aids in regression analysis and curve fitting.

2. Probit or Inverse Normal Function: Probit analysis serves as an alternative approach 

Table 1 
Experiment PACM data for carbon steel FBH A1

CS test 1 CS test 2 CS test 3
SD VD D HD D VD D HD D VD D HD D

30 °C 20 21 1 20.01 0.01 20.7 0.7 19.69 0.31 19.31 0.69 20.06 0.06
40 °C 20 20.7 0.7 20.17 0.17 20.1 0.1 19.85 0.15 20.25 0.25 20.48 0.48
50 °C 20 19.7 0.3 19.85 0.15 20 0 19.69 0.31 21.6 1.6 20.32 0.32
60 °C 20 19.5 0.5 20.01 0.01 20.2 0.2 20.48 0.48 19.53 0.47 20.01 0.01
70 °C 20 20.8 0.8 20.17 0.17 21.2 1.2 20.05 0.05 21.32 1.32 20.32 0.32
80 °C 20 20.8 0.8 19.91 0.09 21.5 1.5 20.64 0.64 19.5 0.5 20.48 0.48
90 °C 20 21.1 1.1 19.63 0.37 21 1 20.52 0.52 20.24 0.24 20.35 0.35
100 °C 20 20.3 0.3 20.05 0.05 20.5 0.5 19.05 0.95 19.8 0.2 19.37 0.63
110 °C 20 20.5 0.5 20.15 0.15 20 0 19.21 0.79 20.42 0.42 19.15 0.85
120 °C 20 20.6 0.6 19.59 0.41 19.71 0.29 19.37 0.63 20.07 0.07 19.37 0.63
130 °C 20 20.4 0.4 19.53 0.47 20.43 0.43 19.15 0.85 20.43 0.43 19.04 0.96
140 °C 20 19.5 0.5 19.63 0.37 20.25 0.25 20.48 0.48 20.25 0.25 20.48 0.48
150 °C 20 19.6 0.4 19.53 0.47 20.45 0.45 20.32 0.32 19.89 0.11 20.64 0.64
160 °C 20 20.5 0.5 20.01 0.01 20.61 0.61 19.47 0.53 20.25 0.25 20.01 0.01
170 °C 20 20.7 0.7 19.69 0.31 21.17 1.17 20.17 0.17 21.32 1.32 20.45 0.45
180 °C 20 21 1 20.03 0.03 21.14 1.14 20.17 0.17 21.14 1.14 21.12 1.12
190 °C 20 21.2 1.2 19.21 0.79 20.07 0.07 20.17 0.17 20.79 0.79 20.76 0.76
200 °C 20 21.3 1.3 19.15 0.85 20.43 0.43 19.53 0.47 20.79 0.79 20.7 0.7
210 °C 20 21.1 1.1 20.21 0.21 21.14 1.14 20.48 0.48 20.07 0.07 20.01 0.01
220 °C 20 20.5 0.5 20.17 0.17 19.95 0.05 20.64 0.64 19.71 0.29 19.05 0.95
230 °C 20 21 1 20.41 0.41 20.78 0.78 20.64 0.64 19.8 0.2 20.05 0.05
240 °C 20 20 0 20.17 0.17 20.96 0.96 20.96 0.96 20.61 0.61 19.53 0.47
250 °C 20 20.2 0.2 20.64 0.64 20.79 0.79 20.7 0.7 19.53 0.47 20.64 0.64

Notes. All units in mm. SD = specimen diameter;VD = vertical dimension; HD = horizontal dimension; D = 
deviation
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that utilizes the cumulative distribution function of a standard normal distribution. 
This method can be advantageous when the logit function does not adequately 
fit the data.

3. Complementary Log-Log Function, Weibull: The Complementary Log-Log 
function effectively models rare events and tail probabilities, making it useful 
when dealing with extreme values during detection.

4. Loglog Function: The Loglog function is another option for modeling POD data, 
although it is less commonly utilized. This function is particularly beneficial for 
handling complex data distributions.

The MH1823 POD software allows users to select the most appropriate link function 
after inputting the data points. It provides eight possible POD curves, comprising four link 
functions for selection, as illustrated in Figure 4.

Figure 4. Eight possible POD curves generated from four-link functions
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In this study, all POD curves are modeled using the logit function, which is defined as 
the natural logarithm of the odds ratio. The odds ratio represents the ratio of the POD to the 
probability of non-detection. Mathematically, the logit function is expressed as Equation 3.

   [3]

Where P denotes the probability of detection, ln denotes the natural logarithm function.
Applying the logit function transforms the POD, originally ranging from 0 to 1, into 

a scale from negative to positive infinity. This transformation facilitates using linear 
regression techniques, which are simpler and more interpretable compared to non-linear 
models.

A notable advantage of the logit function is its symmetry around P=0.5. This symmetry 
implies that equal weight is assigned to both the probability of detection and non-detection, 
which is particularly beneficial in POD analysis, where both false positives and false 
negatives are significant.

The POD curve typically consists of a solid line and dotted lines. The solid line represents 
the estimated POD for a given flaw size, while the dotted lines indicate the confidence bounds 
around the estimated POD. These bounds reflect the level of uncertainty associated with the 
estimate, with their width depending on the amount and variability of the data. The solid line 
is the primary focus, providing an estimate of the probability of detecting a flaw of a given 
size. In contrast, the dotted lines convey the reliability of that estimate.

It is important to clarify that “a50” does not indicate the discontinuity size at which 
the mean POD reaches 50%, nor does it imply that 50% of the PACM indications align 
precisely with this size without deviation. Similarly, “a90” refers to the size at which the 
detection probability is expected to be approximately 90%.

A meticulous examination of the plotted POD curves reveals that PACM demonstrates 
robust detection capabilities across various materials and temperatures, ranging from 30 °C 
to 250 °C. The Hit/Miss POD results prioritize the accuracy of identified flaws, ensuring 
deviations remain below the 10% threshold.

This analysis underscores the reliability and efficacy of PACM in identifying flaws 
within diverse materials over a wide operational temperature range. The emphasis on 
minimizing deviations in the Hit/Miss POD approach further enhances the precision of 
defect identification and characterization.

Upon comparing all POD curves, four distinct clusters are observed. Table 2 presents the 
a50, a90, and a90/95 values for all temperatures from 30 °C to 250 °C across these clusters.

The variability in POD outcomes can be attributed to inherent differences in data 
combinations and collection methodologies. This variance highlights the absence of a 
consistent pattern in the POD curves, emphasizing the importance of considering these 
factors when interpreting the results.
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Table 2
a50, a90, and a90/95 in four clusters

Temp (°C) a50 a90 a90/95
Cluster 1 60 5.539 16.89 22.09

70 7.372 17.98 22.84
100 7.572 19.91 26.11
110 7.213 18.27 23.36
130 6.574 17.33 22.24
140 3.844 17.53 24.65
150 5.279 17.85 24.06
160 5.459 17.16 22.67
190 6.655 17.67 22.72
200 8.521 18.27 22.59

Cluster 2 80 5.948 15.01 18.84
90 6.239 16.46 20.96
120 8.202 15.43 18.44
170 4.041 16.02 21.62
250 6.692 16.49 20.77

Cluster 3 30 2.153 22.46 NA
40 1.811 23.77 NA
50 0.576 22.70 NA
210 1.684 22.25 NA

Cluster 4 220 6.523 22.41 32.77
230 3.784 21.94 35.74
240 6.555 21.98 31.68

The first cluster, illustrated in Figure 5, 
was formed at 190 °C. It displays a a50 of 
6.655 mm, indicating that 50% of the FBHs 
larger than this size exhibit no deviation. 
In comparison, a90 at 17.67 mm denotes a 
90% probability of no deviation for FBHs 
with dimensions equal to or greater than 
17.67 mm. Additionally, the a90/95 value 
is 22.72 mm, which exceeds all processed 
data. The values of a50 , a90 , and a90/95 can 
be obtained from the graph (highlighted in 
red). This group predominantly includes 
temperatures of 60 °C, 70 °C, 100 °C, 110 
°C, 130 °C, 140 °C, 150 °C, 160 °C, 190 
°C, and 200 °C.

The second cluster includes temperatures 
of 80 °C, 90 °C, 120 °C, 170 °C, and 250 
°C, with one of the curves representing data 
collected at 250 °C, as shown in Figure 6. 
At this temperature, the recorded values for 
a50, a90, and a90/95 offer valuable insights 
into the flaw detection capabilities of the 
PACM technique. The a50 value at 250 °C 
is 6.692 mm, indicating a 50% probability of detecting a flaw with a diameter of 6.692 
mm or larger. This suggests that the PACM technique maintains a relatively high level of 
accuracy in detecting flaws at this temperature, even for smaller flaw sizes.

The value of a90 at 250 °C is 16.49 mm, indicating a 90% probability of detecting a 
flaw with a diameter of 16.49 mm or larger. This suggests that the PACM technique is highly 
reliable in detecting larger flaws at high temperatures, with a low rate of false negatives. The 
value of a90/95 at 250 °C is 20.77 mm, which indicates a 95% probability of detecting a 
flaw with a diameter of 20.77 mm or larger, given that a flaw with a diameter of 16.49 mm 
or larger has already been detected with 90% probability. This value provides insight into the 
consistency and reliability of the PACM technique in detecting flaws at high temperatures.

In the third cluster, which includes temperatures of 30 °C, 40 °C, 50 °C, and 210 °C, 
as shown in Figure 7, a noteworthy observation is made. At 30 °C, there is a significant 
reduction in the value of a50, measured at 2.153 mm, compared to the other clusters.

The POD curve at 30 °C shows a significant reduction in the value of a50, indicating 
that the probability of detecting a 5 mm diameter flaw is lower at this temperature compared 
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Figure 5. 190 °C POD curve

Figure 6. 250 °C POD curve
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Figure 7. 30 °C POD curve

to others. This reduction can be attributed to the lower deviation observed in the 5 mm 
diameter FBH A4 and B4, which may be due to well-conditioned data or a high level of 
accuracy in the PACM technique at lower temperatures.

Furthermore, all graphs within this cluster indicate “NA” for a90/a95, meaning that 
the parameter does not exist at 30 °C. This occurs because the lower bound never reaches 
a POD value of 0.9, which is necessary to calculate a90/a95. This anomaly may also be 
attributed to well-conditioned data or a high level of accuracy in the PACM technique at lower 
temperatures, resulting in a POD ceiling where the maximum attainable POD is less than 1.

In summary, the lower deviation observed in the 5 mm diameter FBH A4 and B4, along 
with the absence of a90/a95 at 30 °C, suggests that the PACM technique demonstrates high 
accuracy without deviation in detecting smaller flaws at lower temperatures. However, 
data conditioning and the POD ceiling should still be considered when interpreting POD 
curves to ensure an accurate assessment of the PACM technique’s performance, detecting 
flaws at different temperatures.

The fourth cluster, comprising temperatures of 220 °C, 230 °C, and 240 °C, exhibits 
distinct characteristics that set it apart from the other clusters. As depicted in Figure 8, the 
POD curve for this cluster at 230 °C shows a50 and a90 values of 3.784 mm and 21.94 mm, 
respectively. Notably, the hit-and-miss data patterns observed at this dimension resemble 
those in cluster 1. 
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The above graphs demonstrate that most data have deviations below 10%. This 
indicates that PACM can be effectively utilized in high-temperature operations and across 
three types of materials.

POD Curve Analysis

The PACM technique demonstrated robust detection capabilities for larger flaws (≥17 
mm) at all temperatures, with a90 values consistently exceeding 16 mm (Table 2). At high 
temperatures (e.g., 250 °C), the a90/95 value (20.77 mm) indicates a 95% confidence in 
detecting flaws ≥20.77 mm, which is comparable to low-temperature performance (e.g., 
30 °C, a90 = 22.46 mm). However, smaller flaws (≤5 mm) showed reduced detectability at 
high temperatures due to increased ultrasonic attenuation and thermal noise. This suggests 
PACM is reliable for critical flaw detection in high-temperature environments but requires 
additional validation for minor defects.

Standardization of PACM Accuracy

To establish PACM accuracy, we propose adopting the MIL-HDBK-1823A guidelines for 
POD analysis, which define a90/95 as the critical metric for system reliability (Department 
of Defense Handbook, 2009; Tai, Sultan, Shahar, Yidris et al., 2024). Additionally, 

Figure 8. 230 °C POD curve
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referencing ASTM E2862-23 (2023) guidelines provides a standardized approach to POD 
analysis, critical for quantifying system reliability in NDT applications.

CONCLUSION

In the field of NDT, the POD serves as a critical metric for quantifying the likelihood of 
identifying specific targets or flaws through designated inspection methods. This study aimed 
to assess the effectiveness of PACM for detecting corrosion in high-temperature environments, 
specifically up to 250 °C, and to quantify its reliability through a POD analysis.

Our research has established that PACM can be effectively applied to CS, SS 304, and 
SS 316 surfaces within the experimental temperature range of 30 °C to 250 °C. Through 
comprehensive POD analysis using the binary hit/miss method, we have shown that PACM 
maintains robust detection capabilities across various materials and temperatures, with 
distinct clusters of a50, a90, and a90/95 values indicating consistent performance metrics.

The study contributes to the field by expanding the operational temperature range for 
reliable ultrasonic corrosion detection and offering a systematic approach to assessing 
PACM accuracy using POD analysis. This advancement addresses a significant gap in 
current industrial inspection capabilities, particularly for on-stream inspections in the 
petrochemical industry, where high-temperature operations are common.

While the hit/miss method provided valuable insights, future research should explore 
the “â versus a” method for POD analysis in PACM. This approach, which considers the 
size of detected flaws relative to their actual dimensions, has the potential to enhance the 
accuracy and depth of POD analysis. By incorporating A-Scan amplitude signals, this 
method could provide a more nuanced understanding of flaw-detection mechanisms and 
improve the precision of PACM inspections.

However, implementing the “â versus a” method presents practical challenges, 
particularly in data acquisition and comparison. The method requires extensive datasets 
to establish reliable relationships between detected and actual flaw sizes, which demands 
significant resources and time. Additionally, differences in data analysis techniques 
between the “â versus a” and hit/miss methods may complicate direct comparisons of 
results. Addressing these challenges will require standardized protocols and potentially 
new analytical frameworks to ensure consistent and comparable outcomes across different 
inspection scenarios.

The current study has limitations that should be acknowledged. Our research focused 
on three specific materials (CS, SS 304, SS 316) and relatively simple flaw geometries. 
While these materials are commonly used in industrial applications, the universal 
applicability of PACM needs further validation across diverse alloys and more complex 
defect configurations. Additionally, our laboratory-based experiments may not fully capture 
the variability and challenges of real-world inspection environments.
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To build upon this research, we recommend several specific directions for future work:
1. Integrating the “â versus a” method into PACM POD analysis to enhance accuracy 

and provide a more detailed characterization of detected flaws.
2. Developing temperature-compensated calibration standards specifically designed 

for PACM inspections would improve consistency and reliability across different 
operational temperatures.

3. Conducting field trials in operational petrochemical plants to validate laboratory 
findings under actual industrial conditions and demonstrate the practical benefits 
of PACM in reducing downtime and maintenance costs.

By addressing these recommendations, future research can further establish PACM as a 
cornerstone technology for corrosion detection in high-temperature industrial applications, 
ultimately contributing to enhanced operational safety, extended equipment life, and 
reduced maintenance costs in the petrochemical and related industries.
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